Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosensors (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2227523

ABSTRACT

Occupational stress is a major challenge in modern societies, related with many health and economic implications. Its automatic detection in an office environment can be a key factor toward effective management, especially in the post-COVID era of changing working norms. The aim of this study is the design, development and validation of a multisensor system embedded in a computer mouse for the detection of office work stress. An experiment is described where photoplethysmography (PPG) and galvanic skin response (GSR) signals of 32 subjects were obtained during the execution of stress-inducing tasks that sought to simulate the stressors present in a computer-based office environment. Kalman and moving average filters were used to process the signals and appropriately formulated algorithms were applied to extract the features of pulse rate and skin conductance. The results found that the stressful periods of the experiment significantly increased the participants' reported stress levels while negatively affecting their cognitive performance. Statistical analysis showed that, in most cases, there was a highly significant statistical difference in the physiological parameters measured during the different periods of the experiment, without and with the presence of stressors. These results indicate that the proposed device can be part of an unobtrusive system for monitoring and detecting the stress levels of office workers.


Subject(s)
COVID-19 , Occupational Stress , Humans , Computers , Heart Rate/physiology , Algorithms , Photoplethysmography , Signal Processing, Computer-Assisted
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7256-7259, 2021 11.
Article in English | MEDLINE | ID: covidwho-1566222

ABSTRACT

Health disorders related to the prolonged exposure to stress are very common among office workers. The need for an automated and unobtrusive method of detecting and monitoring occupational stress is imperative and intensifies in the current conditions, where the pandemic COVID-19 causes changes in the working norms globally. In this study, we present a smart computer mouse with biometric sensors integrated in such a way that its structure and functionality remain unaffected. Photoplethysmography (PPG) signal is collected from user's thumb by a PPG sensor placed on the side wall of the mouse, while galvanic skin response (GSR) is measured from the palm through two electrodes placed on the top surface of the mouse. Biosignals are processed by a microcontroller and can be transferred wirelessly over Wi-Fi connection. Both the sensors and the microcontroller have been placed inside the mouse, enabling its plug and play use, without any additional equipment. The proposed module has been developed as part of a system that infers about the stress levels of office workers, based on their interactions with the computer and its peripheral devices.


Subject(s)
COVID-19 , Occupational Stress , Biometry , Computers , Humans , Occupational Stress/diagnosis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL